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Abstract. Suggestions for efficiently determining the lifetimes and mass difference of the light and heavy Bs
mesons (BLs , BHs ) from Bs → J/ψφ,D∗+

s D∗−
s decays are given. Using appropriate weighting functions for

the angular distributions of the decay products (moment analysis), one can extract (ΓH , ΓL,∆m)Bs . Such
a moment analysis allows the determination of the relative magnitudes and phases of the CP-odd and CP-
even decay amplitudes. Efficient determinations of CP-violating effects occuring in Bs → J/ψφ,D∗+

s D∗−
s

are discussed in the light of a possible width difference (∆Γ )Bs , and the utility of this method for B →
J/ψK∗, D∗+

s D
∗

decays is noted. Since our approach is very general, it can in principle be applied to all kinds
of angular distributions and allows the determination of all relevant observables, including fundamental
CKM (Cabibbo–Kobayashi–Maskawa) parameters, as well as tests of various aspects of the factorization
hypothesis. Explicit angular distributions and weighting functions are given, and the general method that
can be used for any angular distribution is indicated.

1 Introduction

Strategies for obtaining experimental insights into CP vi-
olation and non-factorizable contributions to weak decays
are of particular interest for present particle physics. The
observables of angular distributions can be obtained in an
efficient way by using an angular moment analysis [1]–
[3]. In this approach, the observed experimental data are
weighted by judiciously chosen functions, which project
out any desired observable. This strategy is an alternative
to the usual likelihood fit method [4]. It is demonstrated
that the moment analysis extracts all observables of mea-
sured angular distributions, such as the ones occurring in
weak decays of pseudoscalars [P → V `ν, XJ`ν, V V, etc.].
This method is of general validity. In our present paper, we
apply the formalism to angular distributions [5,6] of Bs
and B meson decays into two vector-meson final states
that are caused by b̄ → s̄cc̄ quark-level transitions. By
making use of the general formalism outlined in this pa-
per, it is straightforward to derive weighting functions for
other exclusive mesonic or baryonic transitions, governed
for instance by b → cud, c`ν, u`ν, c → sdu, s`+ν, d`+ν.

The mixing between neutral Bs mesons is expected
to give rise to CP-even (BLs ) and CP-odd (BHs ) mass
eigenstates, which may have a perceptible width difference
∆Γ ≡ ΓH −ΓL [7]. Using appropriate weighting functions
for the angular distributions of the decay products in the
transitions Bs → J/ψφ and/or Bs → D∗+

s D∗−
s , one can

extract (ΓH , ΓL, ∆m)Bs
.

A characteristic feature of the angular distributions
considered in this paper is the fact that they contain terms
describing interference effects between CP-even and CP-
odd final-state configurations. Because of the lifetime dif-
ference, these contributions give rise to a term in the time
evolution of the untagged rate, which is proportional to
[8]: (

e−ΓHt − e−ΓLt
)
sinφCKM, (1)

where φCKM is a weak phase that is introduced through
the CKM matrix [9]. In the Bs decays considered in the
present paper, φCKM is related to the Wolfenstein param-
eter η [10]. It is a remarkable feature that time-evolved
untagged data samples of angular distributions of Bs de-
cays may exhibit CP-violating effects, if ∆Γ is sizeable [8,
11]. This feature may be important, because it provides an
alternative to previous investigations, which have shown
how to extract sinφCKM from tagged, time-dependent
analyses [12,13]. This extraction, however, may not be
feasible in the near future because it requires tagging and
superb vertex detectors, which must resolve the rapid∆mt
oscillations. In contrast, any dependence on ∆mt cancels
in untagged data samples, which therefore allow feasibility
studies with current vertex technology [14].

Concerning tests of the factorization hypothesis [15]–
[20], we divide the b̄ → s̄cc̄ modes into the following two
categories:

– colour-suppressed decays: Bq → J/ψV with (q, V ) ∈
{(s, φ); (d,K∗0); (u,K∗+)} [21,22].
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– colour-allowed decays: Bq → D∗+
s D

∗
q with q ∈ {s, d, u}

[23,24].

Whereas the validity of the factorization assumption is
very doubtful in the colour-suppressed case, it should work
much better for the colour-allowed channels because of
colour transparency [18]. The latter have furthermore
rather tight restrictions from the Heavy Quark Effective
Theory (HQET) [25] for the form factors describing the
“factorized” hadronic matrix elements of the relevant four-
quark operators [23,24,26].

Our paper is organized as follows: in Sect. 2 we cal-
culate the transition matrix elements and observables of
the angular distributions by using an appropriate low-
energy effective Hamiltonian. There we also give estimates
for these observables, allowing a comparison with experi-
mental data. The efficient experimental determination of
these observables is the subject of Sect. 3, where we shall
discuss the angular moment analysis. Sections 4 and 5
are devoted to the angular correlations in the colour-sup-
pressed decays Bs → J/ψ φ, B → J/ψK∗ and the colour-
allowed decays Bs → D∗+

s D∗−
s , B → D∗+

s D
∗
, respec-

tively. There we give the time evolutions of the angular
distributions, appropriate weighting functions, and discuss
CP-violating effects. Finally in Sect. 6 the main results are
summarized.

2 Transition matrix elements and observables

Before we present an efficient method for extracting the
observables of the angular distributions from experimental
data – the angular moment analysis – let us discuss in
this section how these observables are calculated and what
orders of magnitude we expect for them.

2.1 General aspects

In order to calculate the decay amplitudes of the b̄ → s̄cc̄
transitions considered in this paper, we use an appropriate
low-energy effective Hamiltonian, which has the following
structure:

Heff =
GF√

2


∑
j=u,c

λ
(s)
j

{
Qj1C1(µ) +Qj2C2(µ)

+
10∑
k=3

QkCk(µ)

}]
. (2)

Here the quantities λ(s)
j ≡ VjsV

∗
jb denote CKM factors,

Qc1 = (c̄αsβ)V−A (b̄βcα)V−A

Qc2 = (c̄αsα)V−A (b̄βcβ)V−A

Qu1 = (ūαsβ)V−A (b̄βuα)V−A

Qu2 = (ūαsα)V−A (b̄βuβ)V−A (3)

are “current–current” operators,

Q3 = (b̄αsα)V−A

∑
q=u,d,s,c,b

(q̄βqβ)V−A

Q4 = (b̄αsβ)V−A

∑
q=u,d,s,c,b

(q̄βqα)V−A

Q5 = (b̄αsα)V−A

∑
q=u,d,s,c,b

(q̄βqβ)V+A

Q6 = (b̄αsβ)V−A

∑
q=u,d,s,c,b

(q̄βqα)V+A (4)

describe QCD penguins, while the operators

Q7 =
3
2

(b̄αsα)V−A

∑
q=u,d,s,c,b

eq (q̄βqβ)V+A

Q8 =
3
2

(b̄αsβ)V−A

∑
q=u,d,s,c,b

eq (q̄βqα)V+A

Q9 =
3
2

(b̄αsα)V−A

∑
q=u,d,s,c,b

eq (q̄βqβ)V−A

Q10 =
3
2

(b̄αsβ)V−A

∑
q=u,d,s,c,b

eq (q̄βqα)V−A (5)

are “electroweak” penguin operators. Here V ± A corre-
sponds to γµ(1̂±γ5) quark currents, Greek indices are as-
sociated with the SU(3)C quark-colour, and the quantities
eq arising in the expressions for the electroweak penguin
operators label the electrical quark charges. Nowadays,
the Wilson coefficient functions Ck(µ) of the low-energy
effective Hamiltonian Heff, where µ = O(mb) denotes the
usual renormalization scale, are known beyond the leading
logarithmic approximation [27].

Since λ(s)
u is suppressed with respect to λ(s)

c by a CKM
factor λ2Rb, where λ = 0.22 is the Wolfenstein parameter
[10] and

Rb ≡ 1
λ

|Vub|
|Vcb| (6)

is constrained by present experimental data to lie within
the range Rb = 0.36 ± 0.08 [28,29], and since furthermore
the current–current operators Qu1 , Q

u
2 may contribute only

through penguin-like matrix elements to b̄ → s̄cc̄ modes,
the corresponding transition amplitudes are dominated to
an excellent approximation by the contribution propor-
tional to λ

(s)
c (for a detailed discussion, see [30]). In the

penguin operators, we neglect the parts of flavour struc-
ture different from (c̄c)(b̄s). Then the number of relevant
operators reduces from ten to four and the structure of
the decay amplitude simplifies considerably.

In order to implement the factorization hypothesis by
factorizing the hadronic matrix elements of the four-quark
operators Qk into hadronic matrix elements of quark cur-
rents, we have to perform suitable Fierz transformations
of the operator basis specified in (3)–(5). Beyond the lead-
ing logarithmic approximation one has to be very careful
in performing such Fierz transformations, as the Wilson
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coefficients depend both on the form of the chosen opera-
tor basis and on the applied renormalization scheme [27].
Since we do not use any specific Wilson coefficients to ob-
tain numerical estimates in this paper, we may perform
such Fierz transformations and will use a tilde (˜) to indi-
cate Fierz-transformed operators. For a discussion of the
renormalization-scheme dependences arising beyond the
leading logarithmic approximation and their consistent
cancellation in the physical transition amplitudes through
certain one-loop matrix elements at µ = O(mb), the reader
is referred to [31].

Let us, in the following two subsections, investigate
the structure of the hadronic matrix elements of the low-
energy effective Hamiltonian (2) for the exclusive colour-
suppressed and colour-allowed decays Bs → J/ψ φ, B →
J/ψK∗ and Bs → D∗+

s D∗−
s , B → D∗+

s D
∗
, respectively.

2.2 Colour-suppressed decays

If we perform a Fierz transformation of the current–
current operators specified in (3), the decay amplitude for
Bq → J/ψV ((q, V ) ∈ {(s, φ); (d,K∗0); (u,K∗+)}) can be
written in the following form:

〈J/ψ(λ)V (λ)|Heff|Bq〉
=
GF√

2
VcsV

∗
cb

[
Ceff
1 (µ)〈J/ψ(λ)V (λ)|Q̃c1(µ)|Bq〉

+Ceff
1,oct(µ)〈J/ψ(λ)V (λ)|Q̃c1,oct(µ)|Bq〉

+Ceff
5 (µ)〈J/ψ(λ)V (λ)|Qc5(µ)|Bq〉

+Ceff
5,oct(µ)〈J/ψ(λ)V (λ)|Qc5,oct(µ)|Bq〉

]
, (7)

where λ denotes the helicities of the final-state vector
mesons and the “effective” Wilson coefficient functions are
given by

Ceff
1 (µ) ≡ C1(µ) +

1
3
C2(µ) + C3(µ)

+
1
3
C4(µ) + C9(µ) +

1
3
C10(µ) (8)

Ceff
1,oct(µ) ≡ 2 [C2(µ) + C4(µ) + C10(µ)] (9)

Ceff
5 (µ) ≡ C5(µ) +

1
3
C6(µ) + C7(µ) +

1
3
C8(µ) (10)

Ceff
5,oct(µ) ≡ 2 [C6(µ) + C8(µ)] . (11)

The µ-dependence of these Wilson coefficients is cancelled
by that of the hadronic matrix elements appearing in (7).
In deriving the transition matrix element in (7), we have
used the relations

Q̃c2 =
1
3
Q̃c1 + 2Q̃c1,oct (12)

Qc6 =
1
3
Qc5 + 2Qc5,oct (13)

with

Q̃c1 = (c̄αcα)V–A

(
b̄βsβ

)
V–A (14)

Q̃c1,oct =
(
c̄αT

a
αβcβ

)
V–A

(
b̄γT

a
γδsδ

)
V–A

(15)

and

Qc5 = (c̄αcα)V+A

(
b̄βsβ

)
V–A (16)

Qc5,oct =
(
c̄αT

a
αβcβ

)
V+A

(
b̄γT

a
γδsδ

)
V–A

. (17)

Here the 3 × 3 matrices T a are the SU(3)C generators,
normalized to tr(T a T b) = δab/2. As we will see below,
the form of the Fierz-transformed operators given above
is better suited to analyse the Bq → J/ψV decays since
the J/ψ is related to the (c̄c) pieces. The penguin contri-
butions to Ceff

1 (µ) and Ceff
1,oct(µ) are at most O(10%) and

O(1%), respectively, as can be estimated from the values
of their Wilson coefficients [27].

If one assumes that J/ψ emerges from the vector parts
of the (cc)V±A quark currents appearing in the operators
in (14)–(17), the matrix elements of Q̃1(,oct) and Q̃5(,oct)
will be equal and the decay amplitude (7) can be simpli-
fied considerably. Moreover, within the framework of naive
factorization, we obtain (analogous for Qc5 and Qc5,oct):〈
J/ψ(λ)V (λ)

∣∣∣Q̃c1∣∣∣Bq〉
f

= 〈J/ψ(λ) |(c̄c)V–A| 0〉 〈V (λ)
∣∣(b̄s)V–A

∣∣Bs〉 (18)〈
J/ψ(λ)V (λ)

∣∣∣Q̃c1,oct

∣∣∣Bq〉
f

= 〈J/ψ(λ) |(c̄ T ac)V–A| 0〉 〈V (λ)
∣∣(b̄ T as)V–A

∣∣Bs〉 , (19)

where summation over colour-indices is understood im-
plicitly. Consequently, since J/ψ is a colour-singlet state,
the factorized hadronic matrix elements of the colour-
octet operators given in (19) vanish.

2.3 Colour-allowed decays

In the case of the colour-allowed decays Bq → D∗+
s D

∗
q

(q ∈ {u, d, s}), the transition amplitude can be written in
a way that is completely analogous to (7):

〈D∗+
s (λ)D

∗
q(λ)|Heff|Bq〉

=
GF√

2
VcsV

∗
cb

[
Ceff
2 (µ)〈D∗+

s (λ)D
∗
q(λ)|Qc2(µ)|Bq〉

+Ceff
2,oct(µ)〈D∗+

s (λ)D
∗
q(λ)|Qc2,oct(µ)|Bq〉

+Ceff
6 (µ)〈D∗+

s (λ)D
∗
q(λ)|Q̃c6(µ)|Bq〉

+Ceff
6,oct(µ)〈D∗+

s (λ)D
∗
q(λ)|Q̃c6,oct(µ)|Bq〉

]
. (20)

The corresponding effective Wilson coefficient functions
are, however, very different:

Ceff
2 (µ) ≡ 1

3
C1(µ) + C2(µ)

+
1
3
C3(µ) + C4(µ) +

1
3
C9(µ) + C10(µ) (21)

Ceff
2,oct(µ) ≡ 2 [C1(µ) + C3(µ) + C9(µ)] (22)

Ceff
6 (µ) ≡ 1

3
C5(µ) + C6(µ) +

1
3
C7(µ) + C8(µ) (23)

Ceff
6,oct(µ) ≡ 2 [C5(µ) + C7(µ)] . (24)
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In deriving (20), we have used the relations

Qc1 =
1
3
Qc2 + 2Qc2,oct (25)

Q̃c5 =
1
3
Q̃c6 + 2Q̃c6,oct (26)

with

Qc2 = (c̄αsα)V–A

(
b̄βcβ

)
V–A (27)

Qc2,oct =
(
c̄αT

a
αβsβ

)
V–A

(
b̄γT

a
γδcδ

)
V–A

(28)

and

Q̃c6 = −2 (c̄αLsα)
(
b̄βRcβ

)
(29)

Q̃c6,oct = −2
(
c̄αLT

a
αβsβ

) (
b̄γRT

a
γδcδ

)
. (30)

Here L and R correspond to the Dirac structures 1̂ − γ5
and 1̂+γ5, respectively. The D∗+

s meson emerges from the
(c̄s) pieces of these operators. Since it is a vector meson,
we have 〈

D∗+
s |c̄αLsα| 0〉 = 0 , (31)

and hence the factorized matrix element of Q̃c6 vanishes. As
in Sect. 2.2, the hadronic matrix elements of the colour-
octet operators vanish within the factorization approxi-
mation because of their colour-structure.

2.4 Observables of the angular distributions

The hadronic matrix element of a generic four-quark op-
erator Q between the state vectors 〈V1(λ)V2(λ)| and |Bq〉
has the following general Lorentz-decomposition [5,6]:

〈V1(λ)V2(λ)|Q|Bq〉
= εV1,µ(λ)∗εV2,ν(λ)∗

[
agµν +

b

mV1mV2

pµV2
pνV1

+i
c

mV1mV2

εµναβpV1,αpV2,β

]
, (32)

where the symbols ε(λ) denote the polarization vectors of
the final-state vector mesons V1 and V2. A similar para-
metrization can be employed to express the transition ma-
trix elements [(7) and (20)], yielding

a =
GF√

2
VcsV

∗
cb

[Ceff
i (µ)Af

i + Ceff
i+4(µ)Af

i+4

+Ceff
i (µ)Anf

i (µ) + Ceff
i,oct(µ)Anf

i,oct(µ)

+Ceff
i+4(µ)Anf

i+4(µ) + Ceff
i+ 4,oct(µ)Anf

i+ 4,oct(µ)
]

(33)

b =
GF√

2
VcsV

∗
cb

[Ceff
i (µ)Bf

i + Ceff
i+4(µ)Bf

i+4

+Ceff
i (µ)Bnf

i (µ) + Ceff
i,oct(µ)Bnf

i,oct(µ)

+Ceff
i+4(µ)Bnf

i+4(µ) + Ceff
i+ 4,oct(µ)Bnf

i+ 4,oct(µ)
]

(34)

c =
GF√

2
VcsV

∗
cb

[Ceff
i (µ)Cf

i + Ceff
i+4(µ)Cf

i+4

+Ceff
i (µ)Cnf

i (µ) + Ceff
i,oct(µ)Cnf

i,oct(µ)

+Ceff
i+4(µ)Cnf

i+4(µ) + Ceff
i+ 4,oct(µ)Cnf

i+ 4,oct(µ)
]
, (35)

where the index i distinguishes between colour-suppressed
(i = 1) and colour-allowed (i = 2) decays and “f” and “nf”
correspond to “factorized” and “non-factorized” matrix el-
ements, respectively. Note that the factorized amplitudes
do not depend on the renormalization scale µ. Since the
Wilson coefficients depend on this scale, this already sig-
nals the need for non-factorizable contributions to cancel
the µ-dependence in (33)–(35) (see e.g. [32] for a further
discussion of that point).

In the following sections we will analyse the decays
Bq → V1V2 in terms of linear polarization states. The cor-
responding decay amplitudes take the form [23,33]

A(Bq(t) → V1V2) =
A0(t)
x

ε∗LV1
ε∗LV2

−A‖(t)ε∗TV1
· ε∗TV2

/
√

2

−iA⊥(t)ε∗V1
× ε∗V2

· p̂V2
/
√

2 , (36)

where x ≡ pV1 · pV2/(mV1mV2) and p̂V2 is the unit vector
along the direction of motion of V2 in the rest frame of V1.
Here the time dependences originate from Bq–Bq mixing.
In our notation, an unmixed Bq meson is present at t = 0.

The linear polarization amplitudes at t = 0 defined by
(36) can be expressed in terms of a, b and c as follows [33]:

A0(0) = −xa− (x2 − 1)b

A‖(0) =
√

2 a (37)

A⊥(0) =
√

2(x2 − 1) c.

At time t = 0, the angular distributions for Bq → V1V2
depend on the observables |A0(0)|, |A‖(0)|, |A⊥(0)| and
on the two phases δ1 ≡ Arg

[
A‖(0)∗A⊥(0)

]
and δ2 ≡

Arg [A0(0)∗A⊥(0)], which are CP-conserving strong phases
that are 0 (mod π) in the absence of final-state interac-
tions (probably not a justifiable assumption for the colour-
suppressed modes). Quantitative estimates for these ob-
servables will be given in the following subsection.

2.5 Factorization tests and estimates of observables

While the non-factorizable contributions to a, b and c
cannot be calculated at present, the evaluation of the
factorizable contributions is straightforward. Without yet
going into the details of which form factors to employ,
the naive factorization assumption yields many testable
consequences. For example, time-reversal invariance forces
the form factors parametrizing quark currents to be all
relatively real. Consequently, naive factorization predicts
the same strong phase (mod π) for the three amplitudes
A0(0), A‖(0), A⊥(0). It therefore predicts vanishing values
of the two observables [17,19,20]

Im [A∗
0(0)A⊥(0)] = 0 (38)

Im [A∗
‖(0)A⊥(0)] = 0 , (39)

and the equality

Re [A∗
0(0)A‖(0)] = ±|A0(0) A‖(0)| . (40)
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The breakdown of the naive factorization assumption is
unequivocally proved if any of the three Eqs. (38)–(40) is
not satisfied. Detailed comparisons of polarization ampli-
tudes in non-leptonic and semi-leptonic decays test addi-
tional implications of the naive factorization assumption.
The phenomenology of detailed studies of the full non-
trivial angular distributions is thus much richer than the
single factorization test available for a pseudoscalar decay-
ing into two pseudoscalars [18]. While the above equations
represent general tests of the factorization assumption, it
is also useful to examine the predictions for the observ-
ables of the angular distributions for various form factor
ansätze.

2.5.1 The colour-suppressed decays Bq → J/ψV

The factorized amplitudes for Bq → J/ψV with (q, V ) ∈
{(s, φ); (d,K∗0); (u,K∗+)} are given by [16,21,22]:

Af
1 = − fJ/ψmJ/ψ(mBq

+mV )ABqV
1 (m2

J/ψ) = Af
5

Bf
1 = 2

fJ/ψm
2
J/ψmV

mBq
+mV

A
BqV
2 (m2

J/ψ) = Bf
5 (41)

Cf
1 = 2

fJ/ψm
2
J/ψmV

mBq +mV
V BqV (m2

J/ψ) = Cf
5,

where we have used the notation of Bauer, Stech and
Wirbel for the form factors ABqV

i (q2) and V BqV (q2) of
quark currents [16]. The parameter fJ/ψ denotes the J/ψ
decay constant, which can be determined from the J/ψ →
e+e− rate, yielding fJ/ψ = 395 MeV.

At present, several methods for obtaining the form fac-
tors A1(m2

J/ψ), A2(m2
J/ψ) and V (m2

J/ψ) for the B → K∗

case are on the market. Using SU(3) flavour symmetry of
strong interactions, the B → K∗ form factors can be re-
lated to the Bs → φ case. In Table 1 we have collected the
form factors proposed by several authors [16,34,35], and
have moreover given the corresponding predictions for the
ratios of observables of the angular distributions. These ra-
tios should suffer less from unknown SU(3)-breaking cor-
rections than the observables themselves. Note that these
ratios are independent of the Wilson coefficients within
the factorization approach.

The quantity

Γ0(0)
Γ0(0) + ΓT (0)

≡ |A0(0)|2
|A0(0)|2 + |A‖(0)|2 + |A⊥(0)|2 (42)

describes the ratio of the longitudinal to the total rate
at t = 0. Although CDF [36] claims to have measured
this quantity, from their untagged data sample, to be
0.56 ± 0.21(stat.)+0.02

−0.04(syst.), their claim is valid only if
the CP-odd component of Bs → J/ψφ is negligible, or if
the lifetime difference ∆Γ can be ignored.

The 2nd–4th columns of Table 1 are calculated within
the framework of naive factorization, i.e. we have inserted
(41) into (33)–(35) and have omitted the “nf” terms in
order to calculate the amplitudes in (37).

Table 1. Predictions for form factors and Bs → J/ψφ (B →
J/ψK∗) observables

Observable BSW [16] Soares [34] Cheng [35]

ABK
∗

1 (m2
J/ψ) 0.46 0.42 0.41

ABK
∗

2 (m2
J/ψ) 0.46 0.43 0.36

V BK
∗
(m2

J/ψ) 0.55 1.08 0.72

|A‖(0)|/|A0(0)| 0.81 (0.77) 0.82 (0.78) 0.75 (0.70)
|A⊥(0)|/|A0(0)| 0.41 (0.40) 0.89 (0.88) 0.55 (0.54)

Γ0(0)/(Γ0(0) + ΓT (0)) 0.55 (0.57) 0.40 (0.42) 0.54 (0.56)
δ1 π π π

δ2 0 0 0

The form factors given by Soares [34] are obtained from
D → K(∗)lνl data by using heavy-quark symmety rela-
tions [37] and assuming the monopole momentum-transfer
dependence of the BSW model [16]. Some more form-
factor models and their predictions are discussed in [38].
Note that the small difference between the Bs → J/ψ φ
and B → J/ψK∗ results in Table 1 is related to phase-
space effects and not to any SU(3)-breaking effects in the
corresponding hadronic matrix elements.

Looking at Table 1, we observe that the “factorized”
predictions for |A‖(0)|/|A0(0)| are rather stable (≈ 0.8),
while |A⊥(0)|/|A0(0)| depends strongly on the method
used for obtaining the form factors. A common feature of
all results is δ1 = π and δ2 = 0. Therefore a measurement
of non-trivial phases δ1 and δ2 would imply the presence
of strong final-state interactions and non-factorizable con-
tributions.

Whereas the use of the factorization assumption is very
questionable in the case of the channels Bs → J/ψ φ and
B → J/ψK∗, flavour SU(3) symmetry is probably a good
working assumption. Thus all the hadronization dynamics
of the Bs → J/ψφ decay, such as the phases δ1 and δ2 and
magnitudes of the amplitudes

A0(0), A‖(0), A⊥(0), (43)

can be obtained from the B → J/ψK∗ modes.1 This ap-
proach may be helpful to extract the CKM phase φCKM
(see (1)), as we will see below.

1 Although those SU(3) relations are mostly trivial, one sub-
tlety due to quantum-coherence must be emphasized. Because
of the SU(3) relations in the unmixed amplitudes
Af (Bs → J/ψφ) = Af (B → J/ψK∗) , where f = 0, ‖,⊥ ,
the magnitudes of the amplitudes for BLs or BHs decays into
CP-even or CP-odd J/ψφ final-state configurations, respec-
tively, are a factor of

√
2 larger than their corresponding

B → J/ψK∗ ones. [Here the K∗ is seen in a flavour-specific
mode. If K∗ is neutral and is observed as π0KS , quantum co-
herence in B0 − B0 must also be taken into account.] If the
CP-even processes dominate, then
Γ (BLs → J/ψφ) ≈ 2Γ (B → J/ψK∗) .
Studies of Bs versus B production fractions can thus be un-
dertaken, since the lifetimes will be precisely known
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Table 2. Predictions for form factors and Bs → D∗+
s D∗−

s (B → D∗+
s D

∗
)

observables

Observable BSW HQETstrict HQETsym.-break.

ABD
∗

1 (m2
D∗

s
) 0.72 0.70 (0.68) 0.70 (0.68)

ABD
∗

2 (m2
D∗

s
) 0.76 0.76 (0.75) 0.54 (0.53)

V BD
∗
(m2

D∗
s
) 0.79 0.76 (0.75) 0.89 (0.88)

|A‖(0)|/|A0(0)| 0.90 (0.90) 0.91 (0.91) 0.81 (0.80)
|A⊥(0)|/|A0(0)| 0.32 (0.32) 0.32 (0.33) 0.33 (0.34)

Γ0(0)/(Γ0(0) + ΓT (0)) 0.52 (0.52) 0.52 (0.52) 0.57 (0.57)
δ1 π π π

δ2 0 0 0

The factorization assumption should work much bet-
ter for the transitions Bs → D∗+

s D∗−
s and B → D∗+

s D
∗
.

Therefore the results presented in the following subsection
should be more reliable than those summarized in Table 1.

2.5.2 The colour-allowed decays Bq → D∗+
s D

∗
q

Using again the same notation as [16], we get the following
“factorized” results for the modes Bq → D∗+

s D
∗
q (q ∈

{u, d, s}) [23,24,26]:

Af
2 = −fD∗

s
mD∗

s
(mBq +mD∗

q
)A

BqD
∗
q

1 (m2
D∗

s
), Af

6 = 0

Bf
2 = 2

fD∗
s
m2

D∗
s
mD∗

q

mBq +mD∗
q

A
BqD

∗
q

2 (m2
D∗

s
), Bf

6 = 0

Cf
2 = 2

fD∗
s
m2

D∗
s
mD∗

q

mBq +mD∗
q

V BqD
∗
q (m2

D∗
s
), Cf

6 = 0.

(44)

The parameter fD∗
s

is the D∗
s decay constant. The spin

symmetry of HQET implies fD∗
s

≈ fDs
. A recent com-

pilation of measurements of fDs
from Ds → µν gives

(241 ± 21 ± 30) MeV [39].
In the case of Bq → D

∗
q transitions we have rather

tight restrictions from HQET (for reviews, see for exam-
ple [25]) for the corresponding form factors. The following
ratios turn out to be useful to implement these HQET
constraints [40]:

R1(w) =


1 − q2(

mBq
+mD∗

q

)2


 V BD∗

(q2)
ABD

∗
1 (q2)

(45)

R2(w) =


1 − q2(

mBq +mD∗
q

)2


 ABD∗

2 (q2)
ABD

∗
1 (q2)

, (46)

where R1(w) and R2(w) are defined in such a way that
we have

R1(w) = R2(w) = 1 (47)

for all values of w in the strict heavy-quark limit. The
kinematical variable w is defined by

w =
m2
Bq

+m2
D∗

q
− q2

2mBq
mD∗

q

. (48)

The value of the momentum transfer q2 relevant for (44)
is q2 = m2

D∗
s
. The form factor ABD

∗
1 (q2) is usually written

as

ABD
∗

1 (q2) =
mBq

+mD∗
q

2√mBq
mD∗

q


1 − q2(

mBq +mD∗
q

)2


hA1(w),

(49)
where hA1(w) corresponds to the Isgur–Wise function in
the strict heavy-quark limit and can be written as

hA1(w) = F(1)
[
1 − ρ2

A1
(w − 1) + O((w − 1)2)

]
. (50)

The current status of the normalization F(1) and of the
“slope parameter” ρ2

A1
has been summarized recently by

Neubert in [40]. The form factor ABD
∗

1 (q2) is protected
by Luke’s theorem [41] against 1/mQ corrections at zero
recoil. The other form factors ABD

∗
2 (q2) and V BD

∗
(q2) are

not protected by this theorem. From calculations based on
HQET one expects a rather weak dependence of R1(w)
and R2(w) on w and therefore uses

R1(w) = R1[1 + O(w − 1)] (51)
R2(w) = R2[1 + O(w − 1)]. (52)

In our analysis we will neglect the w-dependence com-
pletely.

Following these lines we have calculated the results for
the form factors and ratios of observables, which should re-
ceive smaller SU(3)-breaking corrections than the observ-
ables themselves, summarized in Table 2. For complete-
ness we have also given the results obtained by applying
the BSW model [16] in the 2nd column. In order to calcu-
late the 3rd and 4th columns, we have used F(1) = 0.91
and ρ2

A1
= 0.91 [40]. The columns denoted by HQETstrict

and HQETsym.-break. correspond to R1 = R2 = 1 and
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R1 = 1.18, R2 = 0.71, respectively, where we have em-
ployed the results by Neubert [40] to take into account
HQET symmetry-breaking corrections. Within the factor-
ization approximation we obtain the following simple ex-
pressions for A‖(0)/A0(0) and A⊥(0)/A0(0) in terms of
the HQET parameters:

A‖(0)
A0(0)

=
√

2
[
mD∗

s

mBq

(
x2 − 1
w + 1

)
R2(w) − x

]−1

(53)

A⊥(0)
A0(0)

= −
[
mD∗

s

mBq

(√
x2 − 1
w + 1

)
R1(w)

]
A‖(0)
A0(0)

, (54)

where the kinematical variable

x =
m2
Bq

−m2
D∗

q
−m2

D∗
s

2mD∗
q
mD∗

s

(55)

has been defined after (36).
If we compare Table 2 with Table 1, we note that the

results for the observables depend much less on the way
of obtaining the form factors. Also the “old” BSW model
is in rather good agreement with the HQET predictions,
which is quite remarkable. Therefore the results given in
Table 2 are more reliable than those collected in Table 1.
In this respect it is also important to note that the non-
factorizable contributions appearing in (33)–(35) should
play a minor role for the colour-allowed decay class and
that δ1 = π and δ2 = 0 is expected to hold on rather solid
ground. Because of the latter feature, CP-violating effects
arising in untagged Bs → D∗+

s D∗−
s data samples should

be a promising way to extract the weak phase φCKM (see
(1)), as has been outlined in detail in [8].

3 The angular-moment analysis

The main focus of this section is the efficient determina-
tion of the observables discussed in Sect. 2.4 and 2.5. This
can be accomplished by an angular-moment analysis [1].
In this approach, the observed data are weighted by ju-
diciously chosen functions, which project out any desired
observable. Whereas [1] determines the moments for a few
choice angular distributions, using spherical harmonics,
this paper indicates how to determine suitable weighting
functions for all kinds of angular distributions, using only
orthogonality arguments (without invoking spherical har-
monics).

Let us denote the angular distribution of a given decay
by

f(Θ,α; t) =
∑
i

b(i)(α; t)g(i)(Θ), (56)

where α represents all the parameters that are indepen-
dent of the kinematics, which is described by certain decay
angles. In general, the physical process involves an arbi-
trary number of such angles denoted generically by Θ. For
the examples considered in this article, i runs from 1 to 6,
and we have

α = {ΓH , ΓL, ∆m, |A0(0)|, |A‖(0)|, |A⊥(0)|, δ1, δ2, φCKM}.

All the quantities of interest are encoded in the time evo-
lution of the observables b(i)(α; t). In the following dis-
cussion the α- and t-dependence of the b(i)’s is implicit
wherever not explicitly stated.

The usual method for extracting b(i)’s is to use an un-
binned maximum likelihood fit [4]. Performing such a fit
for a given quantity requires some idea of the values of
the other quantities. When one deals with limited statis-
tics, one may want to exploit alternative methods that
completely decouple the extraction of one observable from
all the others. Luckily such a method exists, the angular-
moment analysis.

If we can find a weighting function w(i)(Θ) for each i
such that∫

[DΘ]w(i)(Θ)g(k)(Θ) = δik =
{

0 for i 6= k
1 for i = k, (57)

then the b(i)’s can be obtained directly from

b(i) =
∫

[DΘ]w(i)(Θ)fexpt(Θ) . (58)

Here [DΘ] denotes the appropriate measure for integrat-
ing over all angles Θ, and fexpt(Θ) denotes the observed
full angular distribution. For a small number of events
(N), the form of the function fexpt(Θ) will not be known,
but only the values for Θ will be known for each event. In
that case the above equation reduces to

b(i) =
1
N

∑
events

w(i)(Θ) . (59)

These b(i)’s can then be used directly for studying their
(α; t) dependence.

That w(k)’s can always be found for any angular distri-
bution follows from the linear independence of the g(i)’s
(they have to be independent for the angular distribu-
tion to be legitimate). The vector space Vk spanned by all
g(j)’s for j 6= k is a proper subspace of the vector space V
spanned by all g(i)’s. Then there exists a one-dimensional
vector space W such that V = Vk ⊕ W and Vk ⊥ W. Here
the scalar product is defined as v1·v2 ≡ ∫ [DΘ]v1(Θ)v2(Θ);
w(k) is then the element of W with proper magnitude.

For a given set of g(i)’s, the choice of w(i)’s need not
be unique. We can always take any vector space V ′ ⊃
V and the corresponding projection space W ′ such that
V ′ = Vk ⊕ W ′ and Vk ⊥ W ′. Then any w(k) ∈ W ′ with
w(k) · g(k) = 1 will serve our purpose.

We now indicate an explicit procedure for finding a
set of weighting functions applicable to any given angular
distribution. For a theoretical angular distribution of the

form f =
n∑
i=1

b(i)g(i) (the dependence on angles and time

is implicit),

w(i) =
n∑
j=1

λijg
(j) (60)
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is a proper weighting function, where the n2 unknowns λij
are solutions of the n2 simultaneous equations

δik =
n∑
j=1

λij

∫
[DΘ]g(j)g(k). (61)

The existence of such a solution follows from the vector-
space arguments given earlier. The w(i)’s need not be re-
stricted to the vector space spanned by the n vectors g(j)’s,
in which case the unknowns λij will be underdetermined
and more than one set of w(i)’s will serve our purpose.

It is crucial to observe that the weighting functions
w(i) depend only on the angular terms and not on the
values of the observables b(j). The implication is that no
matter how complicated the detailed angular distribution,
there always exists an angular weighting, which projects
out the desired observables alone. We therefore recom-
mend the use of moments whenever one wishes to extract
observables from measured angular distributions, such as
in weak decays of baryons [2] or pseudoscalars [P → V ` ν,
XJ ` ν, V V , etc.], or strong and electromagnetic decays
[3]. The utility of this approach cannot be overempha-
sized. For instance, the moment analysis allows the study
of the q2 dependence of each of the observables separately
in the process P → V `ν. This could prove useful for the
extraction of form factors and the determination of CKM
elements, e.g. Vcb and Vub.

We note that there exist many legitimate choices of
weighting functions. The optimal choice depends on the
numerical values of the observables [1] and on the detector
configuration.

4 The angular distribution
of the colour-suppressed decays Bs → J/ψ φ
and B → J/ψK∗

In this section we give the angular distribution of the de-
cays Bs → J/ψ φ and B → J/ψK∗, their time-dependen-
ces and appropriate weighting functions.

4.1 The decay Bs → J/ψ(→ l+l−)φ(→ K+K−)

An analysis of this process has been performed in [33] in
terms of linear polarization states of the final-state vec-
tor mesons. The corresponding decay amplitude has the
same form as (36). Since the amplitudes A0,‖ and A⊥ are
related to CP-even and CP-odd final-state configurations,
respectively, they differ in time evolution as well as angu-
lar distribution. The angular distribution can be used to
separate these components and their time evolution can
be studied individually.

The differential decay rate at time t as a function of a
generic variable x will be denoted by

dΓ (t, x)
d x

≡ 1
N(t)

d2N(t)
dxdt

. (62)

Consequently the normalized number of decays in the in-
tervals [t, t+∆t] and [x, x+∆x] is given by

dΓ (t, x)
dx

∆x∆t =
1

N(t)
d2N(t)
dxdt

∆x∆t. (63)

4.2 Tagged decays

In the case of Bs → J/ψ φ, the three-angle distribution
for the decay of an initially present (i.e. tagged) Bs meson
takes the form [33]

d3Γ [Bs(t) → J/ψ(→ l+l−)φ(→ K+K−)]
d cos θ dϕ d cosψ

∝ 9
32π

[
2|A0(t)|2 cos2 ψ(1 − sin2 θ cos2 ϕ)

+ sin2 ψ{|A‖(t)|2(1 − sin2 θ sin2 ϕ) + |A⊥(t)|2 sin2 θ

− Im (A∗
‖(t)A⊥(t)) sin 2θ sinϕ}

+
1√
2

sin 2ψ{ Re (A∗
0(t)A‖(t)) sin2 θ sin 2ϕ

+ Im (A∗
0(t)A⊥(t)) sin 2θ cosϕ }

]
. (64)

Throughout this section we will apply the same conven-
tions as in [33], i.e. φ moves in x direction in the J/ψ rest
frame, the z axis is perpendicular to the decay plane of
φ → K+K−, and py(K+) ≥ 0. The coordinates (θ, ϕ) de-
scribe the decay direction of l+ in the J/ψ rest frame and
ψ is the angle made by p(K+) with the x axis in the φ
rest frame. With this convention,

x = pφ , y =
pK+ − pφ(pφ · pK+)
|pK+ − pφ(pφ · pK+)| ,

z = x × y
sin θ cosϕ = p`+ · x , sin θ sinϕ = p`+ · y ,

cos θ = p`+ · z . (65)

Here, the bold-face characters represent unit 3-vectors and
everything is measured in the rest frame of J/ψ. Also

cosψ = −p′
K+ · p′

J/ψ, (66)

where the primed quantities are unit vectors measured in
the rest frame of φ.

The time dependence of the right-hand side of (64) can
be read off from Table 3, where ∆m ≡ mH − mL > 0 is
the mass difference of the mass eigenstates BHs and BLs of
the Bs system and Γ ≡ (ΓH + ΓL)/2 denotes their aver-
age decay width. The phases δ1 ≡ Arg(A‖(0)∗A⊥(0)) and
δ2 ≡ Arg(A0(0)∗A⊥(0)) are CP-conserving strong phases.
In the absence of final-state interactions – probably not a
justifiable assumption for Bs → J/ψφ – they are expected
to be 0 (mod π).

On the other hand, the quantity δφ = φCKM (see (1))
is a CP-violating weak phase, which is introduced through
interference effects between Bs–Bs mixing and decay pro-
cesses. It can be expressed in terms of elements of the
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Table 3. Time evolution of the decay Bs → J/ψ(→ l+l−)φ(→ K+K−) of an initially (i.e.
at t = 0) pure Bs meson

Observable Time evolution

|A0(t)|2 |A0(0)|2
[
e−ΓLt − e−Γt sin(∆mt)δφ

]
|A‖(t)|2 |A‖(0)|2

[
e−ΓLt − e−Γt sin(∆mt)δφ

]
|A⊥(t)|2 |A⊥(0)|2

[
e−ΓH t + e−Γt sin(∆mt)δφ

]
Re(A∗

0(t)A‖(t)) |A0(0)||A‖(0)| cos(δ2 − δ1)
[
e−ΓLt − e−Γt sin(∆mt)δφ

]
Im(A∗

‖(t)A⊥(t)) |A‖(0)||A⊥(0)|
[
e−Γt sin(δ1 −∆mt) + 1

2

(
e−ΓH t − e−ΓLt

)
cos(δ1)δφ

]
Im(A∗

0(t)A⊥(t)) |A0(0)||A⊥(0)|
[
e−Γt sin(δ2 −∆mt) + 1

2

(
e−ΓH t − e−ΓLt

)
cos(δ2)δφ

]

CKM matrix [9,12] as

exp(iδφ) =
VtsV

∗
tb

V ∗
tsVtb

V ∗
csVcb
VcsV ∗

cb

(67)

and is very small, as can be seen easily by applying the
Wolfenstein expansion of the CKM matrix [10]. At leading
order in this expansion δφ vanishes. However, taking into
account higher-order terms (for a treatment of such terms,
see e.g. [42]) gives a non-vanishing result [13,43]:

δφ = 2λ2η = O(0.03). (68)

Consequently δφ measures simply the CKM parameter η.
Note that λ = sin θC = 0.22 is related to the Cabibbo
angle. Useful expressions for δφ can be found in [13], where
the following relation has been derived:

δφ = 2λ2Rb sin γ. (69)

Here γ is one angle of the “usual” unitarity triangle [44].
Consequently, if the CKM-parameter Rb (defined by (6))
is used as an input, δφ allows a determination of γ. That
input allows, however, also the determination of η (or γ)
from the mixing-induced CP asymmetry of Bd → J/ψKS

measuring sin 2β, where β denotes another angle of the
unitarity triangle [44]. If one compares these two results
for η (or γ) obtained from Bs and Bd modes, respectively,
a test of whether the Bs–Bs and Bd–Bd mixing phases are
described by the Standard Model, or receive additional
contributions from physics beyond that model can be per-
formed. Needless to note, a measurement of a value of
δφ much larger than the Standard Model expectation of
O(0.03) would anyway be a striking signal for new physics
in Bs–Bs mixing.

An interesting interpretation of δφ has been given in
[45]. There it was shown that δφ is related to one angle in
a rather squashed (and therefore “unpopular”) unitarity
triangle. Note that terms of O(δφ2) have been neglected
in Table 3.

The angular distribution for an initially present Bs
meson is given by

d3Γ [Bs(t) → J/ψ(→ l+l−)φ(→ K+K−)]
d cos θ dϕ d cosψ

∝ 9
32π

[
2|A0(t)|2 cos2 ψ(1 − sin2 θ cos2 ϕ)

+ sin2 ψ{|A‖(t)|2(1 − sin2 θ sin2 ϕ) + |A⊥(t)|2 sin2 θ

− Im (A
∗
‖(t)A⊥(t)) sin 2θ sinϕ}

+
1√
2

sin 2ψ{ Re (A
∗
0(t)A‖(t)) sin2 θ sin 2ϕ

+ Im (A
∗
0(t)A⊥(t)) sin 2θ cosϕ}

]
, (70)

where the angles are again defined by (65) and (66). The
time dependence of this rate can be obtained easily with
the help of Table 4, where terms of O(δφ2) have been ne-
glected, as in Table 3. In calculating Tables 3 and 4 we
have used the fact that Bs → J/ψ φ (and Bs → J/ψ φ) is
dominated to excellent accuracy by a single weak ampli-
tude, as we have seen in Sect. 2. Therefore we have to deal
only with mixing-induced CP violation and there is no di-
rect CP violation, i.e. |A0(0)| = |A0(0)|, |A‖(0)| = |A‖(0)|
and |A⊥(0)| = |A⊥(0)|.

It is important to note that the mass difference ∆m
can be extracted from time-dependent analyses of tagged
Bs → J/ψ φ data samples [33]. Previous experimental fea-
sibility investigations for the extraction of ∆m focused en-
tirely on tagged flavour-specific modes of Bs mesons [46,
47].

4.3 Untagged decays

Combining Tables 3 and 4, we find that the time evolution
of the untagged data sample for f = J/ψ(→ l+l−)φ(→
K+K−) is given by

d3Γ [f(t)]
d cos θ dϕ d cosψ

∝ 9
16π

[
2|A0(0)|2e−ΓLt cos2 ψ(1 − sin2 θ cos2 ϕ)

+ sin2 ψ{|A‖(0)|2e−ΓLt(1 − sin2 θ sin2 ϕ)
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Table 4. Time evolution of the decay Bs → J/ψ(→ l+l−)φ(→ K+K−) of an initially (i.e.
at t = 0) pure Bs meson

Observable Time evolution

|A0(t)|2 |A0(0)|2
[
e−ΓLt + e−Γt sin(∆mt)δφ

]
|A‖(t)|2 |A‖(0)|2

[
e−ΓLt + e−Γt sin(∆mt)δφ

]
|A⊥(t)|2 |A⊥(0)|2

[
e−ΓH t − e−Γt sin(∆mt)δφ

]
Re(A

∗
0(t)A‖(t)) |A0(0)||A‖(0)| cos(δ2 − δ1)

[
e−ΓLt + e−Γt sin(∆mt)δφ

]
Im(A

∗
‖(t)A⊥(t)) −|A‖(0)||A⊥(0)|

[
e−Γt sin(δ1 −∆mt) − 1

2

(
e−ΓH t − e−ΓLt

)
cos(δ1)δφ

]
Im(A

∗
0(t)A⊥(t)) −|A0(0)||A⊥(0)|

[
e−Γt sin(δ2 −∆mt) − 1

2

(
e−ΓH t − e−ΓLt

)
cos(δ2)δφ

]

+|A⊥(0)|2e−ΓHt sin2 θ} +
1√
2

sin 2ψ{|A0(0)||A‖(0)|

× cos(δ2 − δ1)e−ΓLt sin2 θ sin 2ϕ}
+
{

1√
2
|A0(0)||A⊥(0)| cos δ2 sin 2ψ sin 2θ cosϕ

−|A‖(0)||A⊥(0)| cos δ1 sin2 ψ sin 2θ sinϕ
}

×1
2
(
e−ΓHt − e−ΓLt

)
δφ

]
. (71)

Remarkably the time dependence of the untagged rate
does not depend on the mass difference ∆m. This fea-
ture has been discussed within a more general framework
in [14]. Consequently, whereas ΓL and ΓH can be deter-
mined from the untagged data sample, the extraction of
(∆m)Bs

requires tagging. As has already been pointed
out in [8], because of the lifetime difference (∆Γ )Bs

, the
untagged decay rate (71) develops an interesting contribu-
tion for t > 0, which is proportional to the CP-violating
weak phase δφ. It originates from the imaginary parts of
the interference terms between A⊥(t) (A⊥(t)) and A∗

‖(t)

(A
∗
‖(t)), A

∗
0(t) (A

∗
0(t)). If ∆Γ ≡ ΓH−ΓL is in fact sizeable,

we are optimistic that it will be possible to measure this
effect.

4.4 A closer look at the one-angle distribution

The full three-angle distributions for tagged and untagged
Bs → J/ψ(→ l+l−)φ(→ K+K−) decays discussed in the
previous subsections are quite complicated. A much sim-
pler case arises if we integrate out the two decay angles ϕ
and ψ in (64), leading to the following one-angle distribu-
tion [33]:

dΓ (t)
d cos θ

∝ (|A0(t)|2 + |A‖(t)|2)3
8
(1 + cos2 θ)

+|A⊥(t)|2 3
4

sin2 θ . (72)

Let us first briefly illustrate the angular moment analysis
outlined in Sect. 3 for this transparent one-angle distribu-
tion. In this case, we have

g(1)(θ) =
3
8
(
1 + cos2 θ

)
, g(2)(θ) =

3
4

sin2 θ. (73)

Consequently, if we choose

w(1)(θ) = 5 cos2 θ− 1 and w(2)(θ) = 2 − 5 cos2 θ, (74)

the orthogonality relation∫ +1

−1
d(cos θ)w(i)(θ)g(k)(θ) = δik (75)

is satisfied, and we obtain immediately

|A0(tj)|2 + |A‖(tj)|2 ∝
∑
i

(5 cos2 θi − 1) (76)

|A⊥(tj)|2 ∝
∑
i

(2 − 5 cos2 θi) , (77)

where the summation is over all the events in the same
time bin as tj .

In the case of the untagged one-angle distribution, the
∆mt oscillations proportional to the CP-violating weak
phase δφ cancel, and the terms (76) and (77) evolve like
(|A0(0)|2+|A‖(0)|2)e−ΓLt and |A⊥(0)|2e−ΓHt, respectively.
A fit (now with only one parameter in each time evolu-
tion) gives the decay widths ΓL and ΓH of the CP-even
and CP-odd Bs mass eigenstates, as well as the CP-even
and CP-odd rates |A0(0)|2 + |A‖(0)|2 and |A⊥(0)|2, re-
spectively. For limited statistics, one may want to use time
moments [48]

f (n) =
∫ ∞

0
dt tn f(t) . (78)

The weighting-functions method is thus an alternative to
the two-bin method suggested in [1,33]. Note that we do
not need any a priori information about the relative mag-
nitudes of CP-even and CP-odd amplitudes.
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In the case of tagged measurements, the integrated de-
cay rates

Γ (t) =
∫ +1

−1
d(cos θ)

dΓ (t)
d cos θ

(79)

evolve in time for intitially present Bs and Bs mesons as

Γ (t) ∝ (|A0(0)|2 + |A‖(0)|2) e−ΓLt + |A⊥(0)|2e−ΓHt

− (|A0(0)|2 + |A‖(0)|2 − |A⊥(0)|2)
×e−Γt sin(∆mt) δφ (80)

and

Γ (t) ∝ (|A0(0)|2 + |A‖(0)|2) e−ΓLt + |A⊥(0)|2e−ΓHt

+
(|A0(0)|2 + |A‖(0)|2 − |A⊥(0)|2)

×e−Γt sin(∆mt) δφ , (81)

respectively, where we have used Tables 3 and 4. Conse-
quently, the time-dependent CP asymmetry arising in the
decay Bs → J/ψ φ takes the following form:

aCP(Bs(t) → J/ψ φ) ≡ Γ (t) − Γ (t)
Γ (t) + Γ (t)

= − |A0(0)|2 + |A‖(0)|2 − |A⊥(0)|2(|A0(0)|2 + |A‖(0)|2) e−ΓLt + |A⊥(0)|2e−ΓHt

×e−Γt sin(∆mt) δφ . (82)

Using the quantitative estimates collected in Table 1, we
obtain

|A⊥(0)|2
|A0(0)|2 + |A‖(0)|2 = 0.1 . . . 0.5 . (83)

Although these estimates suffer from large hadronic un-
certainties, they indicate that it may not be justified to
neglect the CP-odd contributions proportional to |A⊥(0)|2
in the time-dependent CP asymmetry (82).

The coefficient of sin(∆mt) δφ in (82) can be experi-
mentally determined [for instance, from the untagged stud-
ies outlined above]. Thus the fundamental weak phase δφ
can be cleanly extracted once the ∆mt oscillations are re-
solved. Future experiments at the Tevatron and the LHC
should be able to achieve this goal. Once the ∆mt oscilla-
tions are traced, one can alternatively perform a tagged,
one-angle, time-dependent study to separate the CP-even
and CP-odd contributions, from each of which δφ can be
directly extracted. The efficient extraction of the various
observables depends on the detector configuration, so that
other possible variations should be considered. The full
angular distributions contain, of course, all the available
information, and will be determined eventually.

In order to determine δφ from untagged Bs → J/ψ φ
decays, where the ∆mt oscillations cancel, the observables
corresponding to the interference terms Im (A∗

‖(t)A⊥(t))
and Im (A∗

0(t)A⊥(t)) must be studied. Valuable informa-
tion about CP-conserving strong phases can also be ob-
tained, thereby sheding light on the hadronization dynam-
ics of Bs → J/ψ φ and the issue of “factorization”, which
predicts trivial strong phases. A set of weighting functions
applicable to this case is given in Table 5.

Table 5. A set of weighting functions for extracting the ob-
servables b(i)(t) of the decays Bs → J/ψ(→ l+l−)φ(→ K+K−)
and B → J/ψ(→ l+l−)K∗(→ πK)

Observables: b(i)(t) w(i)(θ, ϕ, ψ)

|A0(t)|2 1
2 [5(cos2 θ − sin2 θ cos 2ϕ) − 1]

|A‖(t)|2 1
2 [5(cos2 θ + sin2 θ cos 2ϕ) − 1]

|A⊥(t)|2 2 − 5 cos2 θ

Re(A∗
0(t)A‖(t)) 5√

2
sin(2ψ) sin(2ϕ)

Im(A∗
‖(t)A⊥(t)) − 5

2 sin(2θ) sinϕ

Im(A∗
0(t)A⊥(t)) 25

4
√

2
sin(2ψ) sin(2θ) cosϕ

4.5 The decay B → J/ψ(→ l+l−)K∗(→ πK)

The angular distribution for B → J/ψ(→ l+l−)K∗(→
πK) takes the same form as (64) if we use the decay angles
specified in (65) and (66) with φ replaced by K∗ and K+

replaced by the strange meson.
Using the same angles for B → J/ψ(→ l+l−)K

∗
(→

πK), we obtain the analogous angular distribution to the
Bs → J/ψ(→ l+l−)φ(→ K+K−) case given in (70). The
same weighting functions (see Table 5) can therefore be
used to determine the corresponding observables in those
decays. The comparison of the observables in these two
modes would give us an idea of the extent of SU(3) break-
ing.

If the K∗0 is observed to decay to the CP eigenstate
π0KS , the time evolution of the corresponding three-angle
distributions [(64) and (70)] is given in Tables 6 and 7, re-
spectively [1]. Tables 6 and 7 assume that the unmixed
amplitudes depend on a single, unique weak phase, which
is justified within the CKM model (see Sect. 2). In these
tables, Γ and ∆m > 0 describe Bd–Bd mixing. They
are related to each other through the mixing parameter
xd ≡ (∆m/Γ )Bd

. In analogy to (67), mixing-induced CP
violation in Bd → J/ψ(→ l+l−)K∗0(→ π0KS) [1,49] mea-
sures a weak phase β̃, which is given by

exp(−2iβ̃) =
VtdV

∗
tb

V ∗
tdVtb

V ∗
csVcb
VcsV ∗

cb

. (84)

Within the Wolfenstein expansion [10], β̃ is equal, to a
very good approximation, to the angle β of the “standard”
(non-squashed) unitarity triangle [44]. Therefore we have
not distinguished between β̃ and β in Tables 6 and 7.

Whereas the rates for tagged Bd → J/ψKS and Bd →
J/ψKS events, which are given by

Γ [Bd(t) → J/ψKS ]

∝ |A(0)|2e−Γt [1 − sin(2β) sin(∆mt)] (85)

Γ [Bd(t) → J/ψKS ]

∝ |A(0)|2e−Γt [1 + sin(2β) sin(∆mt)] , (86)

allow only the determination of sin(2β) and of (∆m, Γ )Bd
,

an analysis of the tagged three-angle distribution for the
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Table 6. Time evolution of the decay Bd → J/ψ(→ l+l−)K∗0(→ π0KS) of an initially
(i.e. at t = 0) pure Bd meson

Observable Time evolution

|A0(t)|2 |A0(0)|2e−Γt [1 + sin(2β) sin(∆mt)]

|A‖(t)|2 |A‖(0)|2e−Γt [1 + sin(2β) sin(∆mt)]

|A⊥(t)|2 |A⊥(0)|2e−Γt [1 − sin(2β) sin(∆mt)]

Re(A∗
0(t)A‖(t)) |A0(0)||A‖(0)| cos(δ2 − δ1)e−Γt [1 + sin(2β) sin(∆mt)]

Im(A∗
‖(t)A⊥(t)) |A‖(0)||A⊥(0)|e−Γt [sin(δ1) cos(∆mt) − cos(2β) cos(δ1) sin(∆mt)]

Im(A∗
0(t)A⊥(t)) |A0(0)||A⊥(0)|e−Γt [sin(δ2) cos(∆mt) − cos(2β) cos(δ2) sin(∆mt)]

Table 7. Time evolution of the decay Bd → J/ψ(→ l+l−)K
∗0

(→ π0KS) of an initially
(i.e. at t = 0) pure Bd meson

Observable Time evolution

|A0(t)|2 |A0(0)|2e−Γt [1 − sin(2β) sin(∆mt)]

|A‖(t)|2 |A‖(0)|2e−Γt [1 − sin(2β) sin(∆mt)]

|A⊥(t)|2 |A⊥(0)|2e−Γt [1 + sin(2β) sin(∆mt)]

Re(A
∗
0(t)A‖(t)) |A0(0)||A‖(0)| cos(δ2 − δ1)e−Γt [1 − sin(2β) sin(∆mt)]

Im(A
∗
‖(t)A⊥(t)) −|A‖(0)||A⊥(0)|e−Γt [sin(δ1) cos(∆mt) − cos(2β) cos(δ1) sin(∆mt)]

Im(A
∗
0(t)A⊥(t)) −|A0(0)||A⊥(0)|e−Γt [sin(δ2) cos(∆mt) − cos(2β) cos(δ2) sin(∆mt)]

decay Bd → J/ψ(→ l+l−)K∗0(→ π0KS) (and its CP-
conjugate) yields valuable additional information from the
interference terms, as can be seen by looking at Tables 6
and 7:

– Re(A∗
0(t)A‖(t)) provides additional information on

cos(δ2 − δ1).
– Im(A∗

‖(t)A⊥(t)), Im(A∗
0(t)A⊥(t)) provide additional in-

formation both on sin δ1(2) and cos δ1(2) and on cos(2β).
The latter quantity plays an important role to resolve
discrete ambiguities in the determination of the CKM
angle β [50].

Predictions for these observables are given in Table 1.
The largest data sample for Bd → J/ψK∗0 is, how-

ever, not for K∗0 → π0KS , but for K∗0 → π−K+. The
complete angular distributions and time dependences for
the relevant decay modes are given in Appendix A. For
charged B decays, the corresponding time and angular dis-
tribution is obtained by going to the isospin-related mode
and setting ∆m = 0. Experimental studies of these decays
are very important, since they probe sin(δ1(2)) and non-
factorizable terms through the observables corresponding
to the left-hand sides of (38)–(40) [17,19,20]. The relevant
information about δ1 and δ2 extracted from these B data
samples, “tagged” at the time of decay, can be related to
Bs → J/ψ φ by using SU(3) flavour symmetry of strong
interactions, and allows a determination of δφ from the
time evolution of even the untagged rate given by (71) [8].
This approach does not involve the assumption of factor-
ization, just SU(3) symmetry arguments. Unfortunately

the corresponding SU(3)-breaking corrections cannot be
treated in a quantitative way at present.

5 The angular distribution
of the colour-allowed decays Bs → D∗+

s D∗−
s

and B → D∗+
s D

∗

The decay of D∗±
s is predominantly electromagnetic, i.e.

D∗±
s → D±

s γ, whereas D
∗

decays also strongly to Dπ.
Therefore the angular distributions of the two decay
modes discussed in this section are quite different from
each other. The first step in the decay chain is, however,
still of the form P → V1V2 (as in Bs → J/ψφ) and con-
sequently the terms A0, A‖, A⊥ retain the same meanings
as in (36) and the same physical significance as in Sect. 4.

5.1 The decay Bs → D∗+
s (→ D+

s γ)D
∗−
s (→ D−

s γ)

Applying the same convention as in [51], we define the
coordinate system as follows: in the rest frame of the de-
caying Bs meson, let the directions of motion of D∗+

s and
D∗−
s be z′ and z′′, respectively. In the plane transverse to

z′ (or z′′), choose any direction as y′ and y′′. The directions
of x′ and x′′ are then specified uniquely via x′ = y′ × z′
and x′′ = y′′ ×z′′. Thus, x′ and x′′ point in opposite direc-
tions. Then (θ′, ϕ′) is the direction of D+

s in the rest frame
of D∗+

s in the (x′ − y′ − z′) coordinate system, whereas
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Table 8. A set of weighting functions for Bs → D∗+
s (→ D+

s γ)D∗−
s (→ D−

s γ). Here
C(θ′, θ′′) = (1 + cos2 θ′)(1 + cos2 θ′′)

b(i)(t) w(i)(θ′, θ′′, χ)

|A0|2 (−45/92)C(θ′, θ′′) + (245/92) sin2 θ′ sin2 θ′′

|A‖|2 (10/23)C(θ′, θ′′) − (45/46) sin2 θ′ sin2 θ′′ + (25/4) sin2 θ′ sin2 θ′′ cos 2χ

|A⊥|2 (10/23)C(θ′, θ′′) − (45/46) sin2 θ′ sin2 θ′′ − (25/4) sin2 θ′ sin2 θ′′ cos 2χ

Re(A∗
0A‖) 25

√
2 sin θ′ sin θ′′ cos θ′ cos θ′′ cosχ

Im(A∗
‖A⊥) −(25/4) sin2 θ′ sin2 θ′′ sin 2χ

Im(A∗
0A⊥) −25

√
2 sin θ′ sin θ′′ cos θ′ cos θ′′ sinχ

(θ′′, ϕ′′) is the direction of D−
s in the rest frame of D∗−

s in
the (x′′ − y′′ − z′′) coordinate system.

Since the choice of directions of y′ and y′′ was com-
pletely arbitrary, only the combination χ = ϕ′ + ϕ′′ of ϕ′
and ϕ′′ is physical and these two angles will appear in the
angular distribution only through χ. In terms of the mo-
menta of particles, the angles θ′, θ′′ and χ can be defined
as:

cos θ′ = p′
D+

s
· pD∗+

s
, cos θ′′ = p′′

D−
s

· pD∗−
s

sin θ′ sin θ′′ cosχ = − cos θ′ cos θ′′ − p′
D+

s
· p′′

D−
s

sin θ′ sin θ′′ sinχ = (p′
D+

s
× p′′

D−
s
) · pD∗+

s
. (87)

The bold-faced quantities are unit three-vectors. The un-
primed quantities are measured in the rest frame of Bs,
single-primed quantities in the rest frame of D∗+

s , and
double-primed quantities in the rest frame of D∗−

s .
In terms of these angles, the angular distribution takes

the form

d3Γ

d cos θ′ d cos θ′′ dχ
(88)

∝ 9
64π

{
2|A0|2 sin2 θ′ sin2 θ′′ +

1
2
|A‖|2[(1 + cos2 θ′)

×(1 + cos2 θ′′) + sin2 θ′ sin2 θ′′ cos 2χ]

+
1
2
|A⊥|2[(1 + cos2 θ′)(1 + cos2 θ′′)

− sin2 θ′ sin2 θ′′ cos 2χ]
− Im (A∗

‖A⊥) sin2 θ′ sin2 θ′′ sin 2χ

+2
√

2 Re (A∗
0A‖) sin θ′ sin θ′′ cos θ′ cos θ′′ cosχ

− 2
√

2 Im (A∗
0A⊥) sin θ′ sin θ′′ cos θ′ cos θ′′ sinχ

}
,

where the time dependence of all observables is implicit.
It can be read off from Table 3. The weighting functions
are listed in Table 8.

The angular distribution for the CP-conjugate process
Bs → D∗+

s (→ D+
s γ)D

∗−
s (→ D−

s γ) is given by

d3Γ

d cos θ′d cos θ′′ dχ
(89)

∝ 9
64π

{
2|A0|2 sin2 θ′ sin2 θ′′ +

1
2
|A‖|2[(1 + cos2 θ′)

×(1 + cos2 θ′′) + sin2 θ′ sin2 θ′′ cos 2χ]

+
1
2
|A⊥|2[(1 + cos2 θ′)(1 + cos2 θ′′)

− sin2 θ′ sin2 θ′′ cos 2χ]

− Im (A‖
∗
A⊥) sin2 θ′ sin2 θ′′ sin 2χ

+2
√

2 Re (A0
∗
A‖) sin θ′ sin θ′′ cos θ′ cos θ′′ cosχ

−2
√

2 Im (A0
∗
A⊥) sin θ′ sin θ′′ cos θ′ cos θ′′ sinχ

}
.

The time evolution of the various quantities is the same
as in Table 4.

As in the case ofBs → J/ψφ, the decayBs → D∗+
s D∗−

s

is dominated by a single weak amplitude. Therefore the
analysis of the tagged and untagged decays outlined in
Sect. 4.2 and 4.3 remains valid by replacing (J/ψ, φ, l+,
l−, K+, K−) → (D∗+

s , D∗−
s , D+

s , γ, D−
s , γ). Since this

process is colour-allowed, factorization is expected to hold
more strongly.

5.2 The decay B → D∗+
s (→ D+

s γ)D
∗
(→ Dπ)

Whereas the decay of the D∗+
s meson is of the form V →

Pγ, which has the same angular dependence as V → l+l−

for massless leptons, the D
∗

decay belongs to the category
V → P1P2. The net angular distribution should therefore
have the same form as that for P → V (→ l+l−)V (→
P1P2). The angular distribution is thus given by (64),
where the definitions of angles are the same as in (65) and
(66) with φ replaced by D

∗
, l+ replaced by D+

s , and K+

replaced by the charmed meson arising from the D
∗

de-
cay. The angular distribution for the CP-conjugate decay
B → D∗−

s (→ D−
s γ)D

∗(→ Dπ) is given as in (70). The
weighting functions collected in Table 5 can be used to
extract the corresponding observables from experimental
data.

At this point, a few comments concerning the time
evolution of these angular distributions are in order. Let
us first consider decays of neutral Bd mesons. Since here
the final states are flavour-specific, no interference effects
between Bd–Bd mixing and decay processes arise in this
case. Consequently, the time evolution of the correspond-
ing observables is only governed by the “mixing” of the
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initial particle, which is either a pure Bd or Bd. For Bd →
D∗+
s (→ D+

s γ)D
∗−(→ Dπ) and Bd → D∗−

s (→ D−
s γ)

D∗+(→ Dπ), the time evolution of a generic observable
Q of the angular distribution takes hence the form Q(t) =
Q(0) e−Γt cos2(∆mt/2), while we have Q(t) = Q(0) e−Γt
sin2(∆mt/2) in the case of Bd → D∗−

s (→ D−
s γ)D

∗+(→
Dπ) and Bd → D∗+

s (→ D+
s γ)D

∗−(→ Dπ). The time evo-
lutions of the untagged flavour-specific decays and the re-
lated B± decays can be obtained straightforwardly from
these expressions by setting ∆m = 0.

6 Summary

The kinematics of B and Bs meson decays into two vector-
particles, which both continue to decay through CP-con-
serving interactions into two lighter particles, involve three
independent decay angles. The time evolution of the coeffi-
cients of the corresponding angular distributions contains
valuable information about the lifetime and mass differ-
ences between the Bs mass eigenstates BHs and BLs , the
relative magnitudes and phases of CP-odd and CP-even
decay amplitudes, and CP-violating effects, including the
Wolfenstein parameter η and the CKM angle β. The ratios
of these coefficients are estimated by using various form-
factor models. Determinations of these time-dependent co-
efficients will be useful in testing these models and further-
more in determining the extent to which factorization or
the SU(3) flavour symmetry of strong interactions hold in
these decays.

The observables of the angular distributions can be de-
termined from experimental data by an angular-moment
analysis in which the data are weighted by judiciously
chosen weighting functions in order to arrive directly at
the observables. At times, this permits the extraction of
the fundamental CKM parameters. A method applicable
to all kinds of angular distributions is indicated, where
the weighting functions can be determined without any
a priori knowledge of the values of the coefficients. This
method is almost as good as the likelihood-fit method for
a small number of parameters and is expected to give some
reliable results even with low statistics where a likelihood
fit to a large number of parameters is inefficient.

The Bs meson decays Bs → J/ψφ, D∗+
s D∗−

s are con-
sidered in the light of a possible width difference (∆Γ )Bs

.
The observables of their angular distributions can be re-
lated to those of the decays B → J/ψK∗, D∗+

s D
∗

by us-
ing the SU(3) flavour symmetry, where B stands for Bd
or B+. The full angular distributions for all these transi-
tions are given explicitly, and the corresponding weighting
functions are specified. The time-dependent observables
in all these decays provide information about the corre-
sponding values of ∆Γ and ∆m. In addition, the decays
of Bs mesons inform us about the Wolfenstein parameter
η, while Bd → J/ψK∗(→ π0KS) probes the CKM angle
β. Some of the quantities related to the Bs case can even
be extracted from untagged data samples, where one does
not distinguish between initially present Bs or Bs mesons.
The comparison between coefficients of angular distribu-
tions of Bs and B mesons may give us an idea about

SU(3)-breaking effects, while the comparison of colour-
suppressed (B → J/ψV ) and colour-allowed (B → D∗±

s V )
modes should help in testing the expectation that factor-
ization holds to a greater extent in the latter case.
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Appendix

A Angular distributions
and time dependences for flavour-specific
Bd → J/ψ(→ l+l−)K∗(→ K±π∓) modes

The angles are defined as in (65), where the φ meson is re-

placed by
(−)
K∗, and the K+ meson by the strange meson in

the final state. In order to parametrize the corresponding
angular distributions, we use the following combinations
of trigonometric functions:

f1 = 2 cos2 ψ (1 − sin2 θ cos2 ϕ)
f2 = sin2 ψ (1 − sin2 θ sin2 ϕ)
f3 = sin2 ψ sin2 θ

f4 = sin2 ψ sin 2θ sinϕ

f5 = (1/
√

2) sin 2ψ sin2 θ sin 2ϕ

f6 = (1/
√

2) sin 2ψ sin 2θ cosϕ . (90)

Taking into account |Af | = |Af | and using the notation
Af ≡ Af (0), where f ∈ {0, ‖,⊥}, we obtain

d3Γ [Bd(t) → J/ψ(→ l+l−)K∗(→ K+π−)]
d cos θ dϕ d cosψ

(91)

=
9

32π
cos2

(
∆mt

2

)
e−Γt {f1|A0|2 + f2|A‖|2 + f3|A⊥|2

−f4 Im (A∗
‖A⊥) + f5 Re (A∗

0A‖) + f6 Im (A∗
0A⊥)

}
d3Γ [Bd(t) → J/ψ(→ l+l−)K∗(→ K−π+)]

d cos θ dϕ d cosψ
(92)

=
9

32π
cos2

(
∆mt

2

)
e−Γt {f1|A0|2 + f2|A‖|2 + f3|A⊥|2

+f4 Im (A∗
‖A⊥) + f5 Re (A∗

0A‖) − f6 Im (A∗
0A⊥)

}
d3Γ [Bd(t) → J/ψ(→ l+l−)K∗(→ K−π+)]

d cos θ dϕ d cosψ
(93)

=
9

32π
sin2

(
∆mt

2

)
e−Γt {f1|A0|2 + f2|A‖|2 + f3|A⊥|2

+f4 Im (A∗
‖A⊥) + f5 Re (A∗

0A‖) − f6 Im (A∗
0A⊥)

}
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d3Γ [Bd(t) → J/ψ(→ l+l−)K∗(→ K+π−)]
d cos θ dϕ d cosψ

(94)

=
9

32π
sin2

(
∆mt

2

)
e−Γt {f1|A0|2 + f2|A‖|2 + f3|A⊥|2

−f4 Im (A∗
‖A⊥) + f5 Re (A∗

0A‖) + f6 Im (A∗
0A⊥)

}
.
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